Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607011

RESUMO

Calcitonin gene-related peptide (CGRP) and nitric oxide (NO) have been recognized as important mediators in migraine but their mechanisms of action and interaction have not been fully elucidated. Monoclonal anti-CGRP antibodies like fremanezumab are successful preventives of frequent migraine and can be used to study CGRP actions in preclinical experiments. Fremanezumab (30 mg/kg) or an isotype control monoclonal antibody was subcutaneously injected to Wistar rats of both sexes. One to several days later, glyceroltrinitrate (GTN, 5 mg/kg) mimicking nitric oxide (NO) was intraperitoneally injected, either once or for three consecutive days. The trigeminal ganglia were removed to determine the concentration of CGRP using an enzyme-linked immunosorbent assay (ELISA). In one series of experiments, the animals were trained to reach an attractive sugar solution, the access to which could be limited by mechanical or thermal barriers. Using a semi-automated registration system, the frequency of approaches to the source, the residence time at the source, and the consumed solution were registered. The results were compared with previous data of rats not treated with GTN. The CGRP concentration in the trigeminal ganglia was generally higher in male rats and tended to be increased in animals treated once with GTN, whereas the CGRP concentration decreased after repetitive GTN treatment. No significant difference in CGRP concentration was observed between animals having received fremanezumab or the control antibody. Animals treated with GTN generally spent less time at the source and consumed less sugar solution. Without barriers, there was no significant difference between animals having received fremanezumab or the control antibody. Under mechanical barrier conditions, all behavioral parameters tended to be reduced but animals that had received fremanezumab tended to be more active, partly compensating for the depressive effect of GTN. In conclusion, GTN treatment seems to increase the production of CGRP in the trigeminal ganglion independently of the antibodies applied, but repetitive GTN administration may deplete CGRP stores. GTN treatment generally tends to suppress the animals' activity and increase facial sensitivity, which is partly compensated by fremanezumab through reduced CGRP signaling. If CGRP and NO signaling share the same pathway in sensitizing trigeminal afferents, GTN and NO may act downstream of CGRP to increase facial sensitivity.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Feminino , Ratos , Masculino , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Glicerol , Ratos Wistar , Roedores/metabolismo , Óxido Nítrico , Nociceptividade , Nitroglicerina/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Açúcares
2.
PLoS Biol ; 21(9): e3002310, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37721958

RESUMO

Decline of mitochondrial function is a hallmark of cellular aging. To counteract this process, some cells inherit mitochondria asymmetrically to rejuvenate daughter cells. The molecular mechanisms that control this process are poorly understood. Here, we made use of matrix-targeted D-amino acid oxidase (Su9-DAO) to selectively trigger oxidative damage in yeast mitochondria. We observed that dysfunctional mitochondria become fusion-incompetent and immotile. Lack of bud-directed movements is caused by defective recruitment of the myosin motor, Myo2. Intriguingly, intact mitochondria that are present in the same cell continue to move into the bud, establishing that quality control occurs directly at the level of the organelle in the mother. The selection of healthy organelles for inheritance no longer works in the absence of the mitochondrial Myo2 adapter protein Mmr1. Together, our data suggest a mechanism in which the combination of blocked fusion and loss of motor protein ensures that damaged mitochondria are retained in the mother cell to ensure rejuvenation of the bud.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Divisão Celular Assimétrica , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Miosinas/metabolismo , Proteínas Mitocondriais/metabolismo
3.
EMBO J ; 40(16): e107913, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34191328

RESUMO

The formation of protein aggregates is a hallmark of neurodegenerative diseases. Observations on patient samples and model systems demonstrated links between aggregate formation and declining mitochondrial functionality, but causalities remain unclear. We used Saccharomyces cerevisiae to analyze how mitochondrial processes regulate the behavior of aggregation-prone polyQ protein derived from human huntingtin. Expression of Q97-GFP rapidly led to insoluble cytosolic aggregates and cell death. Although aggregation impaired mitochondrial respiration only slightly, it considerably interfered with the import of mitochondrial precursor proteins. Mutants in the import component Mia40 were hypersensitive to Q97-GFP, whereas Mia40 overexpression strongly suppressed the formation of toxic Q97-GFP aggregates both in yeast and in human cells. Based on these observations, we propose that the post-translational import of mitochondrial precursor proteins into mitochondria competes with aggregation-prone cytosolic proteins for chaperones and proteasome capacity. Mia40 regulates this competition as it has a rate-limiting role in mitochondrial protein import. Therefore, Mia40 is a dynamic regulator in mitochondrial biogenesis that can be exploited to stabilize cytosolic proteostasis.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Peptídeos/metabolismo , Agregação Patológica de Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Linhagem Celular , Citosol/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Saccharomyces cerevisiae
4.
Eur J Pain ; 24(2): 383-397, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31661581

RESUMO

BACKGROUND: The α1 -adrenoceptor agonist, phenylephrine, is used at high concentrations as a mydriatic agent and for the treatment of nasal congestion. Among its adverse side-effects transient burning sensations are reported indicating activation of the trigeminal nociceptive system. METHODS: Neuropeptide release, calcium imaging and meningeal blood flow recordings were applied in rodent models of meningeal nociception to clarify possible receptor mechanisms underlying these pain phenomena. RESULTS: Phenylephrine above 10 mM dose-dependently released calcitonin gene-related peptide (CGRP) from the dura mater and isolated trigeminal ganglia, whereas hyperosmotic mannitol at 90 mM was ineffective. The phenylephrine-evoked release was blocked by the transient receptor potential vanilloid 1 (TRPV1) antagonist BCTC and did not occur in trigeminal ganglia of TRPV1-deficient mice. Phenylephrine at 30 mM caused calcium transients in cultured trigeminal ganglion neurons responding to the TRPV1 agonist capsaicin and in HEK293T cells expressing human TRPV1. Local application of phenylephrine at micromolar concentrations to the exposed rat dura mater reduced meningeal blood flow, whereas concentrations above 10 mM caused increased meningeal blood flow. The flow increase was abolished by pre-application of the CGRP receptor antagonist CGRP8-37 or the TRPV1 antagonist BCTC. CONCLUSIONS: Phenylephrine at high millimolar concentrations activates TRPV1 receptor channels of perivascular afferents and, upon calcium inflow, releases CGRP, which increases meningeal blood flow. Activation of TRPV1 receptors may underlie trigeminal nociception leading to cranial pain such as local burning sensations or headaches caused by administration of high doses of phenylephrine. SIGNIFICANCE: Phenylephrine is used at high concentrations as a mydriaticum and for treating nasal congestion. As adverse side-effects burning sensations and headaches have been described. Phenylephrine at high concentrations causes calcium transients in trigeminal afferents, CGRP release and increased meningeal blood flow upon activation of TRPV1 receptor channels, which is likely underlying the reported pain phenomena.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Calcitonina , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Células HEK293 , Humanos , Camundongos , Fenilefrina/farmacologia , Ratos , Ratos Wistar , Canais de Cátion TRPV
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...